Harmonic quasi-isometric maps II: negatively curved manifolds

نویسندگان

چکیده

We prove that a quasi-isometric map, and more generally coarse embedding, between pinched Hadamard manifolds is within bounded distance from unique harmonic map.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiconformal Harmonic Maps into Negatively Curved Manifolds

Let F : M → N be a harmonic map between complete Riemannian manifolds. Assume that N is simply connected with sectional curvature bounded between two negative constants. If F is a quasiconformal harmonic diffeomorphism, then M supports an infinite dimensional space of bounded harmonic functions. On the other hand, if M supports no non-constant bounded harmonic functions, then any harmonic map o...

متن کامل

Quasi-conformal Rigidity of Negatively Curved Three Manifolds

In this paper we study the rigidity of infinite volume 3-manifolds with sectional curvature −b2 ≤ K ≤ −1 and finitely generated fundamental group. In-particular, we generalize the Sullivan’s quasiconformal rigidity for finitely generated fundamental group with empty dissipative set to negative variable curvature 3-manifolds. We also generalize the rigidity of Hamenstädt or more recently Besson-...

متن کامل

Negatively Ricci Curved Manifolds

In this paper we announce the following result: “Every manifold of dimension ≥ 3 admits a complete negatively Ricci curved metric.” Furthermore we describe some sharper results and sketch proofs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2021

ISSN: ['1435-9855', '1435-9863']

DOI: https://doi.org/10.4171/jems/1065